///‘}/ Newland

Newland Android PDA

APl Handbook

Revision History

Version Description Date
V1.0.0 Initial release. January 16, 2018
Updated the “Change the Scanner Settings” and “Reserved
V1.0.1 June 19, 2018
Keys” sections, and added the “Appendix” section.
V1.0.2 Added the “Configuring Symbologies” section. March 25, 2019
V1.03 Updated the “Scan Barcode” and “Stop Scanning” sections | May 31, 2019
V1.04 Updated the “Configuring Scanner Parameters” section Step.9, 2020
Added raw data interface for scan result byte.
V1.05 Jun.6,2022
Added settings for NFC, positioning, soft keyboard and APN.
Added the “Enable or Disable Recent Apps” section
Added the “Delay Mode” option
V1.06 Added the “Send Scan Fail Broadcast” option Jun.29,2022
Added the “DOTCODE” symbology
Added the “Advanced Settings” section.
Updated the “EXTRA_SCAN_SETTINGS_RESTORE”
section
Updated the “EXTRA_SCAN_AUTOENT” section.
V1.07 Updated the “EXTRA_TRIG_MODE” section. April.6, 2023

Updated the default setting of “SCAN_ENCODE”.
Deleted the table of “programmable barcode parameters”.
Deleted the table of Advanced Settings.

Table of Contents

ADBOUL ThiS MANUAL.......coiiieiiir i r e a e n e nr e 1
Development ENVIFONMENTo e e e e e e e s s e mm e e e e s mme e e e e e e smmme e e e e e nsmmnnenean 1
Obtain Product Model NUMDETccciiiiiiii i s 1
3= T oo T L= TS Lo 1 T 1
SCAN BAICOUE ...ttt b bbbt e e bt e e a b et e ea et e e bt e et nbre s 1
Gt BArCOUE Data........eeiieiiii ettt 2
RS (o] oS T7=1 o 1T RO RERR 3
Change the SCanNer SENGScoii i et e e et e e e e e e e e e e e e e s ee e e e e e eaneeeas 4
Configuring ScannNer ParameEtersot e e e e e e e e e e e e ne e 4
Configuring SYMDOIOGIESt ettt e e e ettt e e e e e e s abeee e e e e e s nbeeeeaeeaanneeeeaaeeeannsees 6
==Y =YY= o B = 7
L0 1 LT L L 8
NOtIfiCation Bar PUI-AOWN...........ooiiiiii ettt ettt anb e e sabe e s sanee e e 8
Press the Home Key to SWitCh t0 DESKIOPeoiiiiiiieie e 8
St the SYSIEM TIME ...ttt ettt e e e e et e e e e e e et et e e e e e s aanneaeeeaaeaannnnneeaaeaanns 8
Set the NFC, Positioning, Soft Keyboard, and APN 9
Enable or Disable RECENT ADPS ... ittt e ettt e e e e e e et e e e e e e s anneeeeaeeaannneeeas 15
N o o =T 5 T [16

SYmMDbOIOGY 1D NUMDET ...ttt ettt e e e e ettt e e e e s e nbeee e e e e e anneeeeaeeaaannneeeaeeaanes 16

About This Manual

This manual is applicable to Newland Android Portable Data Collectors (hereinafter referred to “the
terminal”).

Development Environment

All APIs are built based on standard Android broadcast mechanism, so there is no need for additional
SDKs. The terminal application development environment is the same as Android application
development environment.

Obtain Product Model Number

To get the product model number, use android.os.Build. MODEL. According to this, the application can
adapt to manufacturers' different devices, such as MT65 and MT90.

Barcode Scanner

Scan Barcode

To activate the terminal to scan barcode, application should send the following broadcast to the system.
® Broadcast: nlscan.action.SCANNER_TRIG
To trigger the scan engine.
® Extra scan timeout parameter: SCAN_TIMEOUT (value: int, 1-9; default value: 3; unit: second)
To set scan timeout, i.e. the maximum time a scan attempt can last.
® Extra scan type parameter: SCAN_TYPE (value: 1 or 2; default value: 1)
To set scan type: Value = 1, read one barcode during a scan attempt

Value = 2, read two barcodes during a scan attempt (This feature is NOT available)

Example 1:

Intent intent = new Intent ("nlscan.action.SCANNER_TRIG");
mContext.sendBroadcast(intent);

Example 2:

Intent intent = new Intent ("niscan.action.SCANNER_TRIG");
intent.putExtra("SCAN_TIMEOUT", 4);// SCAN_TIMEOUT value: int, 1-9; unit: second
intent.putExtra("SCAN_TYPE ", 2);// SCAN_TYPE: read two barcodes during a scan attempt
mContext.sendBroadcast(intent);

Note: When a scan and decode session is in progress, sending the broadcast above will stop the
ongoing session. When scanning barcode by pressing the Scan key, it is processed at the bottom layer,
thus application does not need to listen for Scan KeyPress event or send the broadcast.

Get Barcode Data

There are three ways to get barcode data:
1. Fill in EditText directly: Output scanned data at the current cursor position in EditText.

2. Simulate keystroke: Output scanned data to keyboard buffer to simulate keyboard input and get the
data at the current cursor position in TextBox.

3. Output via API: Application acquires scanned data by registering a broadcast receiver and listening for
specific broadcast intents.
® Broadcast: nlscan.action.SCANNER_RESULT
To get barcode data.
® Extra scan result 1 parameter: SCAN_BARCODE1
To get the data of barcode 1.
Type: String
® Extra scan result 1 raw byte parameter: scan_result_one_bytes
To get the byte data of barcode 1.
Type: byte[]
® Extra scan result 2 parameter: SCAN_BARCODE2
To get the data of barcode 2.
Type: String
® Extra scan result 2 raw byte parameter: scan_result_two_bytes
To get the byte data of barcode 2.
Type: byte[]
® Extra symbology ID number parameter: SCAN_BARCODE_TYPE
Type: int (-1 indicates failure to get symbology ID Number)
To get the ID number of the barcode scanned (Refer to the “Symbology ID Number” table in

Appendix to get the barcode type).
® Extra scan state parameter: SCAN_STATE (value: fail or ok)
To get the status of scan operation: Value = fail, operation failed
Value = ok, operation succeeded
Type: String

Example:

Register broadcast receiver:

mFilter= newlIntentFilter("nlscan.action.SCANNER_RESULT");
mContext.registerReceiver(mReceiver, mFilter);

Unregister broadcast receiver:

mContext.unregisterReceiver(mReceiver);

Get barcode data:

mReceiver= newBroadcastReceiver() {
@0Override
publicvoidonReceive(Context context, Intent intent) {
final String scanResult_1=intent.getStringExtra("SCAN_BARCODE1");
final String scanResult_2=intent.getStringExtra("SCAN_BARCODE2");
// Raw byte data of the scan result
final byte[] scanResultByte_1=intent. intent.getByteArrayExtra("scan_result_one_bytes");
final byte[] scanResultByte 2= intent. intent.getByteArrayExtra("scan_result_two_bytes");
final int barcodeType = intent.getintExtra("SCAN_BARCODE_TYPE", -1); // -1:unknown
final String scanStatus=intent.getStringExtra("SCAN_STATE");
if("ok".equals(scanStatus)){

//Success
else{
//Failure, e.g. operation timed out
¥
}
I3

Stop Scanning

Note: When scanning barcode by pressing the Scan key, it is processed at the bottom layer to stop the
scan session, thus application does not need to send the broadcast. Even if you scan barcode by
pressing the Scan key, application only need to acquire scanned data by registering a broadcast receiver
and listening for specific broadcast intents, without having to send the broadcast to activate and stop
scanning.

Use the broadcast nlscan.action.STOP_SCAN to stop an ongoing decode session.

Example:

Intent stoplntent = new Intent(“niscan.action.STOP_SCAN”);
mContext.sendBroadcast(stoplntent);

Change the Scanner Settings

Configuring Scanner Parameters

Application can set one or more scanner parameters, such as enable/disable scanner, by sending to the
system the broadcast ACTION_BAR_SCANCFG which can contain up to 3 parameters.

Parameter Type Description (* indicates default)
Value =0 Disable scanner
=1 Enable scanner*
EXTRA_SCAN_POWER INT Note: When scanner is enabled, it will take some time to
initialize during which all scan requests will be ignored.
Value =0 Level mode
=1 Continuous mode
=2 Pulse mode*
=4 Delay mode (Press and hold the scan trigger to aim
EXTRA_TRIG_MODE INT at barcode then release it to start a decode session which
continues until the decode session timeout expires or a barcode
is decoded. It is advised to use this scan mode and the Acuscan
Decoding feature to ensure that only the desired barcodes are
read if multiple barcodes are placed closely together.)
Value =1 Fill in EditText directly*
EXTRA_SCAN_MODE INT =2 Simulate keystroke
= Output via API
SEND SCAN FAIL BROAD Value =0 Disable the send scan fail braoadcast
CAST_ - INT =1 Enable the send scan fail braoadcast*
Value =0 Do not add a line feed*
EXTRA_SCAN_AUTOENT INT =1 Add a line feed
Send an Enter Key after each barcode is scanned.
EXTRA_SCAN_NOTY_SND | INT Value =0 Sound notification off
— — — = Sound notification on
EXTRA SCAN NOTY VIB INT Value i 0 Vibrat!on not?ficat?on off*
- - - = Vibration notification on
EXTRA_SCAN_NOTY_LED | INT Value =0 LED nofification off
- - - = LED notification on
Set decode session timeout (millisecond)
SCAN_TIMEOUT LONG | Value = 0-9000; default: 3000*
SCAN_INTERVAL LONG Set timeout between decode sessions (millisecond)

Value >= 50; default: 500*

TRIGGER_MODE_MAIN

INT

Value = 0 Disable the Scan key on front panel as scan trigger
= Enable the Scan key on front panel as scan trigger*®

TRIGGER_MODE_LEFT

INT

Disable the Scan key on left side as scan trigger
= Enable the Scan key on left side as scan trigger*

TRIGGER_MODE_RIGHT

INT

Disable the Scan key on right side as scan trigger
= Enable the Scan key on right side as scan trigger*

TRIGGER_MODE_BLACK

INT

Disable the trigger on pistol grip as scan trigger
= Enable the trigger on pistol grip as scan trigger*
(Precondition: The terminal supports this feature)

NON_REPEAT_TIMEOUT

LONG

Set reread delay (millisecond)
Value =0 Reread same barcode with no delay*
>0 Do not allow to reread same barcode before the
delay expires

SCAN_PREFIX_ENABLE

INT

Value =0 Disable prefix
= Enable prefix*

SCAN_SUFFIX_ENABLE

INT

Disable suffix
= Enable suffix*

SCAN_PREFIX

STRING

Set prefix
Value = Hexadecimal value of prefix character; default: null*
e.g. 0x61 should be entered as 61.

SCAN_SUFFIX

STRING

Set suffix
Value = Hexadecimal value of suffix character; default: null*
e.g. 0x61 should be entered as 61.

SCAN_ENCODE

INT

Character encoding
Value =1 UTF-8
=2 GBK
=3 [S0-8859-1
=4 AUTO*
=5 Other
Should enter the value of SCAN_OTHER_ENCODE at
the same time
= 6 windows-1251

OUTPUT_RECOVERABLE

BOOLEAN

Value = true Enable overwrite output
= false Disable overwrite output*

EXTRA_OUTPUT_EDITOR_

ACTION_ENABLE

INT

Value =0 Disable software key event output *
=1 Enable software key event output

EXTRA_OUTPUT_EDITOR_

ACTION

INT

Value = 0 IME_ACTION_UNSPECIFIED
= 1 IME_ACTION_NONE
= 2 IME_ACTION_GO
= 3 IME_ACTION_SEARCH
= 4 IME_ACTION_SEND
= 5 IME_ACTION_NEXT

=6 IME_ACTION_DONE *
=7 IME_ACTION_PREVIOUS

BROADCAST_OUTPUT_AC

TION

STRING

Broadcast output settings
Action value

BROADCAST_OUTPUT_EX

Broadcast output settings

TRA KEY RESULT 1 STRING Barcode Result 1 parameter
BROADCAST_OUTPUT_EX Broadcast output settings

TRA KEY RESULT 2 STRING Barcode Result 2 parameter
BROADCAST_OUTPUT_EX Broadcast output settings
TRA__KEY_BARCODE_TY | STRING Barcode type parameter

PE

BROADCAST_OUTPUT_EX Broadcast output settings
TRA_KEY_BARCODE_TY | STRING Barcode type name parameter
PE_NAME

EXTRA_SCAN_SETTINGS _ BOOLEAN Value = true Restore the default settings

RESTORE

Example 1: Disable scanner

Intent intent = new Intent ("ACTION_BAR_SCANCFG");

intent.putExtra("EXTRA_SCAN_POWER?®", 0);

mContext.sendBroadcast(intent);

Example 2: Output via API, add a line feed

Intent intent = new Intent ("ACTION_BAR_SCANCFG");

intent.putExtra("EXTRA_SCAN_MODE", 3);

intent.putExtra("EXTRA_SCAN_AUTOENT", 1);
mContext.sendBroadcast(intent);

Configuring Symbologies

Application can set barcode parameter, such as enable/disable a symbology, transmit check character,
set minimum/maximum length by sending to the system the broadcast ACTION_BARCODE_CFG which

contains the following three parameters.

Parameter Type Description
Value = Barcode type
CODE_ID STRING e.g. "CODE128"
Value = Barcode parameter
PROPERTY STRING e.g. "Enable”, “Minlen”, or “TrsmtChkChar”
VALUE STRING Value = Value of the barcode parameter

e.g. To enable a symbology, set the value to “1”

Example: Transmit EAN-8 check character

Intent intent = new Intent ("ACTION_BARCODE_CFG");
intent.putExtra("CODE_ID", “EANS8”);

intent.putExtra("PROPERTY", “TrsmtChkChar”);
intent.putExtra("VALUE", “1”); // “1” Enable EAN-8, "0” Disable EAN-8
mContext.sendBroadcast(intent);

Reserved Keys

The terminal provides reserved keys, for example:
MT90 provides one reserved key: F6.
MT®65 provides four reserved keys: F1. F2. F3. F4.

Application can define reserved key’s functions as per actual needs

Example 1: Process the KeyDown event of reserved key

public boolean onKeyDown(int keyCode, KeyEvent event) {
switch (keyCode)
{
case KeyEvent. KEYCODE_F6:
showlInfo("F6 KeyDown\n");

break;

¥
return super. onKeyDown(keyCode,event);
}

Example 2: Process the KeyUp event of reserved key

public boolean onKeyUp(int keyCode, KeyEvent event) {
switch (keyCode)
{
case KeyEvent. KEYCODE_F6:
showlInfo("F6 KeyUp\n");

break;
¥
return super.onKeyDown(keyCode, event);
}

Other APIs

Notification Bar Pull-down

To enable/disable the notification bar pull-down, application should send to the system the broadcast
niscan.action.STATUSBAR_SWITCH_STATE with the value of Extra parameter ENABLE set to be

true/false.

Example: Disable the notification bar pull-down

Intent intent = new Intent("niscan.action.STATUSBAR_SWITCH_STATE");
intent.putExtra("ENABLE", false);
context.sendBroadcast(intent);

Press the Home Key to Switch to Desktop

To enable/disable the feature of switching to desktop by pressing the Home key, application should send
to the system the broadcast nilscan.action.HOMEKEY_SWITCH_STATE with the value of Extra

parameter ENABLE set to be true/false.

Example: Disable the feature of switching to desktop by pressing the Home key

Intent intent = new Intent("niscan.action.HOMEKEY_SWITCH_STATE");
intent.putExtra("ENABLE", false);
context.sendBroadcast(intent);

Set the System Time

To set the system time, application should send to the system the broadcast nlscan.action.SET_TIME
with the value of Extra parameter TIME_MS set to be a string represented as the number of millisecond.

Example:
Public long getTimeMillis(){
Calendar c=Calendar.getlnstance();
c.set(2016,0,1,0,0,0);
return c.getTimelnMillis();

}

Intent it = new Intent("nlscan.action.SET_TIME");
long mills = getTimeMillis();
it.putExtra("TIME_MS", String.valueOf(mills));
mContext.sendBroadcast(it);

Set the NFC, Positioning, Soft Keyboard, and APN

Application can set NFC, Positioning, Soft Keyboard, and APN by sending to the system the broadcast
com.nlscan.action.backuprecovery which contains the following parameters.

Parameter Type Description

Set STRING Json String

Calling Example:

String json = "{\n" +
"\t\"quick_setting\": [{\n" +
"\t\\"quick_setting\": [{\n" +
"t\t\\"NFC.Enable\": \"1\"\n" +

"t\]\n" +
"t\t\"set_data_diff_flag\"; \"0\"\n" +
"g],\n" +

"t\"version\"; \"V0.00.001\"\n" +
"

String action = "com.nlscan.action.backuprecovery";
String pkg = "com.nlscan.nlsbackuprecovery";
Intent intent = new Intent(action);
intent.setPackage(pkg);

intent.putExtra("set", json);

sendBroadcast(intent);

Json Explanation

NFC:
{
"quick_setting": [
{
"quick_setting": [
{
"NFC.Enable": "1" //1: Enable 0: Disable
}

"set_data_diff flag": "1"
}

]1
"version": "V0.00.001"

Soft Keyboard:

"quick_setting": [

{
"quick_setting": [

{

"SHOWSOFTINPUT.Enable": "1" //1:

}
]7
"set_data_diff_flag": "1"
}

]1
"version": "V0.00.001"

Enable 0: Disable

Positioning:

"device_setting": [

{

"start_intent": [

{

"Intent.list": [

{

"type": "broadcast",

"action": "nlscan.action.WRITE_SETTINGS_DB",

"group_split_char™:";",
"params":

"es-db-secure;es-name-location_providers_allowed;es-value-+network,gps;es-type-string"

}

10

}
1,
"set_data_diff_flag": "1"
}
]
"version": "V0.00.001"
}
APN:
{
"device_setting": [
{
"apn": [
{
"RESET_APN.Enable": "1",
"APN_LIST.list": [
{
"APN_PROXY": ", [lproxy
"APN_TYPE" ", Iltype
"APN_SUBID": "1", /[SIM card id, "0" or "1" for single SIM
card
"APN_MVNO_TYPE": ", //IMVNO Type
"APN_MMSC": ", /IMMSC
"APN_MVNO_VALUE": "™, //IMVNO Value
"APN_AUTHTYPE": ", /l Auth type, optional value:
PAP,CHAP,PAP OR CHAP
"APN_SERVER": ", /IServer
"APN_APN": "11111", /IAPN
"APN_USER": ", /IUser Name
"APN_PROTOCOL": "IPv4/IPv6", /[Protocol, optional value: IPv4, IPv6,
IPv4/IPv6
"APN_NAME": "11111", //APN name
"APN_PASSWORD": ", /[Password
"APN_PORT": ", /[Port
"APN_OPERTYPE": "2", // Do not change this item
"APN_MMSPROXY": ", /IMMS proxy

11

"APN_ROAMING_PROTOCOL": "IPv4/IPv6", // Roaming protocol,
optional value: IPv4, IPv6, IPv4/IPv6

"APN_MMSPORT": ", /IMMS port
"APN_BEARER": ™" /[Bearer system
}
]
}
1,
"set_data_diff_flag": "1"
}
1,
"version": "V0.00.001"
}
Remarks for APN settings: Manually add APN on the terminal and verify that the function is normal. Then
compelete the json parameter according to the detailed parameter interface of the APN newly added.
The above json can be set individually or in combination at one time as follows:
{
"device_setting": [
{
"start_intent": [
{
"Intent.list": [
{
"type": "broadcast",
"action": "nlscan.action.WRITE_SETTINGS_DB",
"group_split_char":";",
"params":
"es-db-secure;es-name-location_providers_allowed;es-value-+network,gps;es-type-string"
}
]
}
1,
"apn": [
{

12

"RESET_APN.Enable": "1",
"APN_LIST.list": [
{

"APN_PROXY": ",
"APN_TYPE": ",
"APN_SUBID": "1",
"APN_MVNO_TYPE": ",
"APN_MMSC": ™,
"APN_MVNO_VALUE": ",
"APN_AUTHTYPE": ",
"APN_SERVER": ",
"APN_APN": "11111",
"APN_USER™: ™,
"APN_PROTOCOL": "IPv4/IPv6",
"APN_NAME": "11111",
"APN_PASSWORD": ",
"APN_PORT": ",
"APN_OPERTYPE": "2",
"APN_MMSPROXY": "",
"APN_ROAMING_PROTOCOL": "IPv4/IPv6",
"APN_MMSPORT": "",
"APN_BEARER": "

}

]7
"set_data_diff flag": "1"

]7
"quick_setting": [
{
"quick_setting": [
{
"NFC.Enable™ "1",
"SHOWSOFTINPUT.Enable™: "1"

]7
"set_data_diff flag": "1"

13

"version": "V0.00.001"

14

Enable or Disable Recent Apps

Application can enable or disable the recent apps by sending to the system the broadcast
niscan.action.SWITCH_RECENTS

Example:

Intent intent = new Intent("nlscan.action.SWITCH_RECENTS");
intent.putExtra("ENABLE", false); //Disable the recent apps
context.sendBroadcast(intent);

15

Appendix

Symbology ID Number

= IDNumber Symbology
0 ZASETUP
1 SETUP128
2 CODE128
3 UCCEAN128
4 AlIM128
5 GS1_128
6 ISBT128
7 EANS
8 EAN13
9 UPCE
10 UPCA
11 ISBN
12 ISSN
13 CODE39
14 CODE93
15 93l
16 CODABAR
17 ITF
18 ITF6
19 ITF14
20 DPLEITCODE
21 DPIDENTCODE
22 CHNPOST25
23 STANDARD25
23 IATA25
24 MATRIX25
25 INDUSTRIAL25
26 COOP25
27 CODE11
28 MSIPLESSEY
29 PLESSEY

RSS14

w
o

16

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
512
513
514
515

RSSLIMITED
RSSEXPANDED
TELEPEN
CHANNELCODE
CODE32
CODEZ
CODABLOCKF
CODABLOCKA
CODE49
CODE16K
HIBC128
HIBC39
RSSFAMILY
TriopticCODE39
UPC_E1
PDF417
MICROPDF
QRCODE
MICROQR
AZTEC
DATAMATRIX
MAXICODE
CSCODE
GRIDMATRIX
EARMARK
VERICODE
CCA
CCB
CCC
COMPOSITE
HIBCAZT
HIBCDM
HIBCMICROPDF
HIBCQR
DOTCODE
POSTNET
ONECODE
RM4SCC
PLANET

17

516
517
518
519
520
768
769
770
2048
2049
65535

KIX
APCUSTOM
APREDIRECT
APREPLYPAID
APROUTING
NUMOCRB
PASSPORT
D1
PRIVATE
ZZCODE
UNKNOWN

18

SCANNING
MADE SIMPLE

Newland EMEA Rolweg 25
+31 (0) 345 87 00 33 4104 AV Culemborg
info@newland-id.com The Netherlands

	Product_document_cover-combined
	Newland_Android_PDA_API_Handbook_V1.0.7.pdf
	Product_document_cover-combined.pdf

